In the MetricSpace_ZF we show how a single (ordered loop valued) pseudometric defines a uniformity. In this theory we extend this to the situation where we have an arbitrary collection of pseudometrics, all defined on the the same set \(X\) and valued in an ordered loop \(L\). Since real numbers form an ordered loop all results proven in this theory are true for the standard real-valued pseudometrics.
Suppose \(\mathcal{M}\) is a collection of (an ordered loop valued) pseudometrics on \(X\), i.e. \(d:X\times X\rightarrow L^+\) is a pseudometric for every \(d\in \mathcal{M}\). Then, for each \(d\in \mathcal{M}\) the collection of sets \(\mathfrak{B} = \{ d^{-1}(\{c\in L^+: c\leq b\}): b \in L_+ \}\) forms a fundamental system of entourages. Consequently, by taking supersets of \(\mathfrak{B}\) we can get a uniformity defined by the pseudometric (see theorem metric_gauge_base in the MetricSpace_ZF theory. Repeating this process for each \(d\in \mathcal{M}\) we obtain a collection of uniformities on \(X\). Since all uniformities on \(X\) ordered by inclusion form a complete lattice (see theorem uniformities_compl_latt in the UniformityLattice_ZF) there exists the smallest (coarsest) uniformity that contains all uniformities defined by the pseudometrics in \(\mathcal{M}\).
To shorten the main definition let's define the uniformity derived from a single pseudometric as UnifFromPseudometric. In the definition below \(X\) is the underlying set, \(L,A,r\) are the carrier, binary operation and the order relation, resp., of the ordered loop where the pseudometrics takes its values and \(d\) is the pseudometrics.
definition
\( \text{UnifFromPseudometric}(X,L,A,r,d) \equiv \text{Supersets}(X\times X, \text{UniformGauge}(X,L,A,r,d)) \)
We construct the uniformity from a collection of pseudometrics \(\mathcal{M}\) by taking the supremumum (i.e. the least upper upper bound) of the collection of uniformities defined by each pseudometric from \(\mathcal{M}\).
definition
\( \text{UnifFromPseudometrics}(X,L,A,r,\mathcal{M} ) \equiv \text{LUB_Unif}(X,\{ \text{UnifFromPseudometric}(X,L,A,r,d).\ d\in \mathcal{M} \}) \)
The context muliple_pmetric is very similar to the pmetric_space context except that rather than fixing a single pseudometric \(d\) we fix a nonempty collection of pseudometrics \(\mathcal{M}\). That forces the notation for disk, topology, interior and closure to depend on the pseudometric \(d\). The \(\mathcal{U}\) symbol will denote the collection of uniformities generated by \(\mathcal{M}\). We also assume that the positive cone \(L_+\) of the loop is nonempty, \(r\) down-directs \(L_+\) (see Order_ZF for definition) and that the (positive cone of the) ordered loop is halfable (see \( MetricSpace\_ZF) \)). In short, we assume what we need for ordered loop valued pseudometrics to generate uniformities.
locale muliple_pmetric = loop1 +
assumes nemptyX: \( X\neq \emptyset \)
assumes nemptyLp: \( L_+\neq \emptyset \)
assumes downdir: \( r \text{ down-directs } L_+ \)
assumes halfable: \( \text{IsHalfable}(L,A,r) \)
assumes nemptyM: \( \mathcal{M} \neq \emptyset \)
assumes mpmetricAssm: \( \forall d\in \mathcal{M} .\ \text{IsApseudoMetric}(d,X,L,A,r) \)
defines \( \mathcal{U} \equiv \{ \text{UnifFromPseudometric}(X,L,A,r,d).\ d\in \mathcal{M} \} \)
defines \( disk(d,c,R) \equiv \text{Disk}(X,d,r,c,R) \)
defines \( \tau (d) \equiv \text{MetricTopology}(X,L,A,r,d) \)
defines \( int(d,D) \equiv \text{Interior}(D,\tau (d)) \)
defines \( cl(d,D) \equiv \text{Closure}(D,\tau (d)) \)
If \(d\) is one of the pseudometrics from \(\mathcal{M}\) then theorems proven in the pmetric_space context are valid as applied to \(d\).
lemma (in muliple_pmetric) pmetric_space_valid_in_mpm:
assumes \( d\in \mathcal{M} \)
shows \( pmetric\_space(L,A,r,d,X) \)proofIn the muliple_pmetric context each element of \(\mathcal{U}\) is a uniformity.
lemma (in muliple_pmetric) each_gen_unif_unif:
shows \( \mathcal{U} \subseteq \text{Uniformities}(X) \)proofThe uniformity generated by a family of pseudometrics \(\mathcal{M}\) is indeed a uniformity which is the supremum of uniformities in \(\mathcal{U}\).
lemma (in muliple_pmetric) gen_unif_unif:
shows \( \text{UnifFromPseudometrics}(X,L,A,r,\mathcal{M} ) \text{ is a uniformity on } X \), \( \text{UnifFromPseudometrics}(X,L,A,r,\mathcal{M} ) = \text{Supremum}( \text{OrderOnUniformities}(X),\mathcal{U} ) \) using nemptyX, nemptyM, each_gen_unif_unif, lub_unif_sup(2,3) unfolding UnifFromPseudometrics_defThe uniformity generated by a family of pseudometrics contains all uniformities generated by the pseudometrics in \(\mathcal{M}\).
lemma (in muliple_pmetric) gen_unif_contains_unifs:
assumes \( \Phi \in \mathcal{U} \)
shows \( \Phi \subseteq \text{UnifFromPseudometrics}(X,L,A,r,\mathcal{M} ) \) using nemptyX, assms, each_gen_unif_unif, lub_unif_upper_bound unfolding OrderOnUniformities_def, InclusionOn_def, UnifFromPseudometrics_defIf a uniformity contains all uniformities generated by the pseudometrics in \(\mathcal{M}\) then it contains the uniformity generated by that family of pseudometrics.
lemma (in muliple_pmetric) gen_unif_LUB:
assumes \( \Psi \text{ is a uniformity on } X \) and \( \forall \Phi \in \mathcal{U} .\ \Phi \subseteq \Psi \)
shows \( \text{UnifFromPseudometrics}(X,L,A,r,\mathcal{M} ) \subseteq \Psi \)proofThe uniformity generated by the collection of pseudometrics \(\mathcal{M}\) contains all inverse images of the initial segments of the positive cone of \(L\), (i.e. sets of the form \(d^{-1}(\{c\in l: 0 \leq c \leq y \})\) for \(d\in \mathcal{M}\) and \(y\) from the positive cone \(L_+\) of \(L\)).
lemma (in muliple_pmetric) gen_unif_contains_gauges:
assumes \( d\in \mathcal{M} \), \( y\in L_+ \)
shows \( d^{-1}(\{c\in L^+.\ \langle c,y\rangle \in r\}) \in \text{UnifFromPseudometrics}(X,L,A,r,\mathcal{M} ) \)proofThe uniformity generated by the collection of pseudometrics \(\mathcal{M}\) is the coarsest uniformity that contains all inverse images of the initial segments of the positive cone of \(L\) with respect to all \(d\in\mathcal{M}\).
theorem (in muliple_pmetric) gen_unif_corsest:
assumes \( \Psi \text{ is a uniformity on } X \) and \( \forall d\in \mathcal{M} .\ \forall y\in L_+.\ d^{-1}(\{c\in L^+.\ \langle c,y\rangle \in r\}) \in \Psi \)
shows \( \text{UnifFromPseudometrics}(X,L,A,r,\mathcal{M} ) \subseteq \Psi \)proofThis section presents an alternative, more direct approach to defining a uniformity generated by a collection of pseudometric. This approach is probably equivalent to the one presented in the previous section, but more complicated and hence obsolete.
The next two definitions describe the way a common fundamental system of entourages for \(\mathcal{M}\) is constructed. First we take finite subset \(M\) of \(\mathcal{M}\). Then we choose \(f:M\rightarrow L_+\). This way for each \(d\in M\) the value \(f(d)\) is a positive element of \(L\) and \(\{d^{-1}(\{c\in L^+: c\leq f(d)\}): d\in M\}\) is a finite collection of subsets of \(X\times X\). Then we take intersections of such finite collections as \(M\) varies over \(\mathcal{M}\) and \(f\) varies over all possible functions mapping \(M\) to \(L_+\). To simplify notation for this construction we split it into two steps. In the first step we define a collection of finite intersections resulting from choosing a finite set of pseudometrics \(M\), \(f:M\rightarrow L_+\) and varying the selector function \(f\) over the space of functions mapping \(M\) to the set of positive elements of \(L\).
definition
\( \text{UniformGaugeSets}(X,L,A,r,M) \equiv \) \( \{(\bigcap d\in M.\ d^{-1}(\{c\in \text{Nonnegative}(L,A,r).\ \langle c,f(d)\rangle \in r\})).\ f\in M\rightarrow \text{PositiveSet}(L,A,r)\} \)
In the second step we collect all uniform gauge sets defined above as parameter \(M\) vary over all nonempty finite subsets of \(\mathcal{M}\). This is the collection of sets that we will show forms a fundamental system of entourages.
definition
\( \text{UniformGauges}(X,L,A,r,\mathcal{M} ) \equiv \bigcup M\in \text{FinPow}(\mathcal{M} )\setminus \{\emptyset \}.\ \text{UniformGaugeSets}(X,L,A,r,M) \)
Analogously what is done in the pmetric_space context we will write \( \text{UniformGauges}(X,L,A,r,\mathcal{M} ) \) as \( \mathfrak{B} \) in the muliple_pmetric context.
abbreviation (in muliple_pmetric)
\( \mathfrak{B} \equiv \text{UniformGauges}(X,L,A,r,\mathcal{M} ) \)
The next lemma just shows the definition of \(\mathfrak{B}\) in notation used in the muliple_pmetric.
lemma (in muliple_pmetric) mgauge_def_alt:
shows \( \mathfrak{B} = (\bigcup M\in \text{FinPow}(\mathcal{M} )\setminus \{\emptyset \}.\ \{(\bigcap d\in M.\ d^{-1}(\{c\in L^+.\ c\leq f(d)\})).\ f\in M\rightarrow L_+\}) \) unfolding UniformGaugeSets_def, UniformGauges_def\(\mathfrak{B}\) consists of (finite) intersections of sets of the form \(d^{-1}(\{c\in L^+:c\leq f(d)\})\) where \(f:M\rightarrow L_+\) some finite subset \(M\subseteq \mathcal{M}\). More precisely, if \(M\) is a nonempty finite subset of \(\mathcal{M}\) and \(f\) maps \(M\) to the positive set of the loop \(L\), then the set \(\bigcap_{d\in M} d^{-1}(\{c\in L^+:c\leq f(d)\}\) is in \(\mathfrak{B}\).
lemma (in muliple_pmetric) mgauge_finset_fun:
assumes \( M\in \text{FinPow}(\mathcal{M} ) \), \( M\neq \emptyset \), \( f:M\rightarrow L_+ \)
shows \( (\bigcap d\in M.\ d^{-1}(\{c\in L^+.\ c\leq f(d)\})) \in \mathfrak{B} \) using assms, mgauge_def_altIf \(d\) is member of any finite subset of \(\mathcal{M}\) then \(d\) maps \(X\times X\) to the nonnegative set of the ordered loop \(L\).
lemma (in muliple_pmetric) each_pmetric_map:
assumes \( M\in \text{FinPow}(\mathcal{M} ) \) and \( d\in M \)
shows \( d: X\times X \rightarrow L^+ \) using assms, pmetric_space_valid_in_mpm, pmetric_properties(1) unfolding FinPow_defMembers of the uniform gauge defined by multiple pseudometrics are subsets of \(X\times X\) i.e. relations on \(X\).
lemma (in muliple_pmetric) muniform_gauge_relations:
assumes \( B\in \mathfrak{B} \)
shows \( B\subseteq X\times X \)proofSuppose \(M_1\) is a subset of \(M\) and \(\mathcal{M}\). \(f_1,f\) map \(M_1\) and \(M\), resp. to \(L_+\) and \(f\leq f_1\) on \(M_1\). Then the set \(\bigcap_{d\in M} d^{-1}(\{y \in L_+: y\leq f(d)\})\) is included in the set \(\bigcap_{d\in M_1} d^{-1}(\{y \in L_+: y\leq f_1(d)\})\).
lemma (in muliple_pmetric) fun_inter_vimage_mono:
assumes \( M_1\subseteq \mathcal{M} \), \( M_1\subseteq M \), \( M_1\neq \emptyset \), \( f_1:M_1\rightarrow L_+ \), \( f:M\rightarrow L_+ \) and \( \forall d\in M_1.\ f(d)\leq f_1(d) \)
shows \( (\bigcap d\in M.\ d^{-1}(\{c\in L^+.\ c\leq f(d)\})) \subseteq (\bigcap d\in M_1.\ d^{-1}(\{c\in L^+.\ c\leq f_1(d)\})) \)proofFor any two sets \(B_1,B_2\) in \(\mathfrak{B}\) there exist a third one that is contained in both.
lemma (in muliple_pmetric) mgauge_1st_cond:
assumes \( B_1\in \mathfrak{B} \), \( B_2\in \mathfrak{B} \)
shows \( \exists B\in \mathfrak{B} .\ B\subseteq B_1\cap B_2 \)proofSets in \(\mathfrak{B}\) contain the diagonal and are symmetric, hence contain a symmetric subset from \(\mathfrak{B}\).
lemma (in muliple_pmetric) mgauge_2nd_and_3rd_cond:
assumes \( B\in \mathfrak{B} \)
shows \( id(X)\subseteq B \), \( B = converse(B) \), \( \exists B_2\in \mathfrak{B} .\ B_2 \subseteq converse(B) \)proof\(\mathfrak{B}\) is a subset of the power set of \(X\times X\).
lemma (in muliple_pmetric) mgauge_5thCond:
shows \( \mathfrak{B} \subseteq Pow(X\times X) \) using muniform_gauge_relationsIf \(\mathcal{M}\) and \(L_+\) are nonempty then \(\mathfrak{B}\) is also nonempty.
lemma (in muliple_pmetric) mgauge_6thCond:
shows \( \mathfrak{B} \neq \emptyset \)proofIf the loop order is halfable then for every set \(B_1\in \mathfrak{B}\) there is another set \(B_2\in \mathfrak{B}\) such that \(B_2\circ B_2 \subseteq B_1\).
lemma (in muliple_pmetric) mgauge_4thCond:
assumes \( B_1\in \mathfrak{B} \)
shows \( \exists B_2\in \mathfrak{B} .\ B_2\circ B_2 \subseteq B_1 \)proofIf \(\mathcal{M}\) is a nonempty collection of pseudometrics on a nonempty set \(X\) valued in loop \(L\) partially ordered by relation \(r\) such that the set of positive elements \(L_+\) is nonempty, \(r\) down directs \(L_+\) and \(r\) is halfable on \(L\),then \(\mathfrak{B}\) is a fundamental system of entourages in \(X\) hence its supersets form a uniformity on \(X\) and hence those supersets define a topology on \(X\)
lemma (in muliple_pmetric) mmetric_gauge_base:
shows \( \mathfrak{B} \text{ is a uniform base on } X \), \( \text{Supersets}(X\times X,\mathfrak{B} ) \text{ is a uniformity on } X \), \( \text{UniformTopology}( \text{Supersets}(X\times X,\mathfrak{B} ),X) \text{ is a topology } \), \( \bigcup \text{UniformTopology}( \text{Supersets}(X\times X,\mathfrak{B} ),X) = X \) using nemptyX, mgauge_1st_cond, mgauge_2nd_and_3rd_cond, mgauge_4thCond, mgauge_5thCond, mgauge_6thCond, uniformity_base_is_base, uniform_top_is_top unfolding IsUniformityBaseOn_defThe notion of uniformity can be defined in several ways. Our primary definition in the UniformSpace_ZF theory is based on the concept of entourages. In UniformSpace_ZF_2 we consider the an alternative definition based on uniform covers. The third possible definition is based on families of pseudometrics. "The significance of defining a uniformity by means of a family of pseudometrics lies in the fact that all unifomities can be so obtained." (from Bourbaki: General Topology Chapter IX par. 1.4). In this section we formalize a part of the material that is needed to prove this statement that can be done without the Axiom of Choice and in the general setting of ordered-loop valued pseudometrics.
The definition of a uniformity requires that for each entourage \(U\) there is another one \(V\) such that \(V\circ V\subseteq U\). Furthermore, lemma half_size_symm shows that we can assume \(V\) is symmetric. In some propositions in this section we will assume that we are given a function say \(h\) that provides those half-size entourages, i.e. maps a uniformity \(\Phi\) into itself and for each entourage \(U\in\Phi\) we have \(h(U)\circ h(U)\subseteq V\).
The existence of such function follows from the Axiom of Choice, but we don't want to use AC in this theory.
The next definition lists the desired properties of such halving function for shorter references in theorem assumptions.
definition
\( h \text{ is a halving function for } \Phi \equiv \) \( h:\Phi \rightarrow \Phi \wedge (\forall U\in \Phi .\ h(U) = converse(h(U)) \wedge h(U)\circ h(U) \subseteq U) \)
Let \(\Phi\) be a uniformity on \(X\), \(U\in\Phi\) and \(h\) is a halving function for \(\Phi\). This function then defines inductively a sequence \(\{ H_n\}_{n\in\mathbb{N}}\) of entourages such that \(H_0 = U\) and \(H_{n+1}\circ H_{n+1}\subseteq H_n\). The next lemma shows that \(H\) is a \(\Phi\)-valued sequence which starts at \(U\).
lemma halving_seq_start:
assumes \( U\in \Phi \), \( h \text{ is a halving function for } \Phi \)
defines \( H \equiv \text{InductiveSequence}(U,h) \)
shows \( H:nat\rightarrow \Phi \) and \( H(0) = U \) using assms, indseq_seq, indseq_valat0 unfolding IsHalvingFunction_defFor the inductively defined sequence of halving entourages \(H\) starting from \(U\) and a natural number \(n\) we indeed have \(H_{n+1} \circ H_{n+1} \subseteq H_n\).
lemma halving_seq_halves:
assumes \( U\in \Phi \), \( h \text{ is a halving function for } \Phi \), \( n\in nat \)
defines \( H \equiv \text{InductiveSequence}(U,h) \)
shows \( H(n + 1) = converse(H(n + 1)) \) and \( H(n + 1)\circ H(n + 1) \subseteq H(n) \)proofA halving sequence in \(\Phi\) is decreasing in the inclusion order on \(\Phi\), hence the inclusion order on \(\Phi\) is total on the sequence's image of the natural numbers, hence total on the sequence's image of positive natural numbers. We need that fact about positive natural numbers because we plan to prove that the image of the sequence on the positive natural numbers forms a fundamental system of symmetric entourages. and the first element of the sequence (at index \(0\)) does not have to be symmetric.
lemma halving_seq_decr:
assumes \( \Phi \text{ is a uniformity on } X \), \( U\in \Phi \), \( h \text{ is a halving function for } \Phi \)
defines \( H \equiv \text{InductiveSequence}(U,h) \)
shows \( \text{IsDecreasingSeq}(\Phi , \text{InclusionOn}(\Phi ),H) \), \( \text{InclusionOn}(\Phi ) \text{ is total on } (H(nat)) \), \( \text{InclusionOn}(\Phi ) \text{ is total on } (H(nat\setminus \{0\})) \)proofWe aim at showing that the a halving sequence image is a uniform base. The next lemma shows the first condition in the uniform base definition: for two sets in a halving sequence image there is a third one that is contained in both.
lemma halving_seq_base_1st_cond:
assumes \( \Phi \text{ is a uniformity on } X \), \( U\in \Phi \), \( h \text{ is a halving function for } \Phi \)
defines \( H \equiv \text{InductiveSequence}(U,h) \)
assumes \( B_1\in H(nat\setminus \{0\}) \), \( B_2\in H(nat\setminus \{0\}) \)
shows \( \exists B\in H(nat\setminus \{0\}).\ B\subseteq B_1\cap B_2 \)proofSets in the halving sequence image of positive naturals contain the diagonal, are symmetric and for every such set \(B\) there is another one contained in the converse of the first one and another one \(B_2\) such that \(B_2\circ B_2\subseteq B_1\). Note the symmetry of the sets is not required in the definition of a fundamental system of entourages, but it's good to have as we plan to construct a pseudometric that generates that halving sequence image of positive naturals.
lemma halving_seq_base_2_3_4_conds:
assumes \( \Phi \text{ is a uniformity on } X \), \( U\in \Phi \), \( h \text{ is a halving function for } \Phi \)
defines \( H \equiv \text{InductiveSequence}(U,h) \)
assumes \( B\in H(nat\setminus \{0\}) \)
shows \( id(X)\subseteq B \), \( B = converse(B) \), \( \exists B_1\in H(nat\setminus \{0\}).\ B_1 \subseteq converse(B) \), \( \exists B_2\in H(nat\setminus \{0\}).\ B_2\circ B_2 \subseteq B \)proofThe halving sequence image of positive naturals is contained in the powerset of \(X\times X\) and is not empty.
lemma halving_seq_base_5_and_6th_cond:
assumes \( \Phi \text{ is a uniformity on } X \), \( U\in \Phi \), \( h \text{ is a halving function for } \Phi \)
defines \( H \equiv \text{InductiveSequence}(U,h) \)
shows \( H(nat\setminus \{0\}) \subseteq Pow(X\times X) \) and \( H(nat\setminus \{0\}) \neq \emptyset \)proofIf \(\Phi\) is a uniformity, \(h\) is a halving function for it and \(U\in \Phi\) then the image of the halving sequence defined inductively as \(H_0=U, H_{n+1} = h(H(n))\) on the positive naturals is a fundamental system of entourages.
theorem halving_seq_base:
assumes \( \Phi \text{ is a uniformity on } X \), \( U\in \Phi \), \( h \text{ is a halving function for } \Phi \)
defines \( H \equiv \text{InductiveSequence}(U,h) \)
shows \( (H(nat\setminus \{0\})) \text{ is a uniform base on } X \) using assms, halving_seq_base_1st_cond, halving_seq_base_2_3_4_conds, halving_seq_base_5_and_6th_cond unfolding IsUniformityBaseOn_defTheorem halving_seq_base shows that given a halving function \(h\) for a uniformity \(\Phi\) each entourage \(U\in\Phi\) defines a uniformity that has a countable base consisting of symmetric entourages and (as we show later) contains that entourage. The next definition summarizes the construction of this coarser uniformity.
definition
\( \text{CountBaseUnif}(X,h,U) \equiv \text{Supersets}(X\times X, \text{InductiveSequence}(U,h)(nat\setminus \{0\})) \)
If \(\Phi\) is a uniformity, \(h\) is a halving function for it and \(U\in\Phi\) then \( \text{CountBaseUnif}(X,h,U) \) is a uniformity on \(X\) that contains \(U\) (as a member) and is contained in \(\Phi\).
lemma unif_count_base_unif:
assumes \( X\neq \emptyset \), \( \Phi \text{ is a uniformity on } X \), \( U\in \Phi \), \( h \text{ is a halving function for } \Phi \)
shows \( \text{CountBaseUnif}(X,h,U) \text{ is a uniformity on } X \) and \( U\in \text{CountBaseUnif}(X,h,U) \), \( \text{CountBaseUnif}(X,h,U) \subseteq \Phi \)proofIf \(\Phi\) is a uniformity on a nonempty set \(X\) and admits a halving function \(h\) then \(\Phi\) is the supremum of the collection of uniformities \(\{\Psi_U: U\in\Phi\}\) in the inclusion order relation, where \(\Psi_U = \)\( \text{CountBaseUnif}(X,h,U) \). Since \(\Psi_U\) has a countable base this shows that every uniformity (that admits a halving function) is a union and a supremum of some collection of uniformities each of which has a countable base.
theorem sup_count_base_unifs:
assumes \( X\neq \emptyset \), \( \Phi \text{ is a uniformity on } X \), \( h \text{ is a halving function for } \Phi \)
shows \( \Phi = \bigcup \{ \text{CountBaseUnif}(X,h,U).\ U\in \Phi \} \), \( \Phi = \text{Supremum}( \text{OrderOnUniformities}(X),\{ \text{CountBaseUnif}(X,h,U).\ U\in \Phi \}) \)proofassumes \( d\in \mathcal{M} \)
shows \( pmetric\_space(L,A,r,d,X) \)assumes \( X\neq \emptyset \)
shows \( \mathfrak{U} \text{ is a uniform base on } X \), \( \text{Supersets}(X\times X,\mathfrak{U} ) \text{ is a uniformity on } X \), \( \text{UniformTopology}( \text{Supersets}(X\times X,\mathfrak{U} ),X) \text{ is a topology } \), \( \bigcup \text{UniformTopology}( \text{Supersets}(X\times X,\mathfrak{U} ),X) = X \)assumes \( \Phi \text{ is a uniformity on } X \)
shows \( \Phi \in \text{Uniformities}(X) \)assumes \( X\neq \emptyset \), \( \mathcal{U} \subseteq \text{Uniformities}(X) \), \( \mathcal{U} \neq \emptyset \)
shows \( \text{HasAsupremum}( \text{OrderOnUniformities}(X),\mathcal{U} ) \), \( \text{LUB_Unif}(X,\mathcal{U} ) = \text{Supremum}( \text{OrderOnUniformities}(X),\mathcal{U} ) \), \( \text{Supremum}( \text{OrderOnUniformities}(X),\mathcal{U} ) \text{ is a uniformity on } X \)assumes \( X\neq \emptyset \), \( \mathcal{U} \subseteq \text{Uniformities}(X) \), \( \Phi \in \mathcal{U} \)
shows \( \langle \Phi ,\text{LUB_Unif}(X,\mathcal{U} )\rangle \in \text{OrderOnUniformities}(X) \)assumes \( X\neq \emptyset \), \( \mathcal{U} \subseteq \text{Uniformities}(X) \), \( \mathcal{U} \neq \emptyset \) and \( \forall \Phi \in \mathcal{U} .\ \langle \Phi ,\Psi \rangle \in \text{OrderOnUniformities}(X) \)
shows \( \langle \text{LUB_Unif}(X,\mathcal{U} ),\Psi \rangle \in \text{OrderOnUniformities}(X) \)assumes \( f:X\rightarrow Y \)
shows \( f^{-1}(D) \subseteq X \)assumes \( A\subseteq X \), \( A\in \mathcal{A} \)
shows \( A \in \text{Supersets}(X,\mathcal{A} ) \)assumes \( \Phi \in \mathcal{U} \)
shows \( \Phi \subseteq \text{UnifFromPseudometrics}(X,L,A,r,\mathcal{M} ) \)assumes \( \mathfrak{F} \text{ is a filter on } X \), \( \mathcal{A} \subseteq \mathfrak{F} \)
shows \( \text{Supersets}(X,\mathcal{A} ) \subseteq \mathfrak{F} \)assumes \( \Psi \text{ is a uniformity on } X \) and \( \forall \Phi \in \mathcal{U} .\ \Phi \subseteq \Psi \)
shows \( \text{UnifFromPseudometrics}(X,L,A,r,\mathcal{M} ) \subseteq \Psi \)assumes \( M\in \text{FinPow}(\mathcal{M} ) \) and \( d\in M \)
shows \( d: X\times X \rightarrow L^+ \)assumes \( f:X\rightarrow Y \)
shows \( f^{-1}(A) = \{x\in X.\ f(x) \in A\} \)assumes \( \forall i\in I.\ P(i) \subseteq X \)
shows \( (\bigcap i\in I.\ P(i)) \subseteq X \)assumes \( I\subseteq M \), \( I\neq \emptyset \)
shows \( (\bigcap i\in M.\ P(i)) \subseteq (\bigcap i\in I.\ P(i)) \)assumes \( b_1\leq b_2 \)
shows \( d^{-1}(\{c\in L^+.\ c\leq b_1\}) \subseteq d^{-1}(\{c\in L^+.\ c\leq b_2\}) \)assumes \( r \text{ down-directs } L_+ \)
shows \( \text{IsDownDirectedSet}(L_+,r) \)assumes \( \text{IsDownDirectedSet}(Y,r) \), \( A\in \text{FinPow}(X) \), \( B\in \text{FinPow}(X) \), \( f:A\rightarrow Y \), \( g:B\rightarrow Y \)
shows \( \exists h\in A\cup B\rightarrow Y.\ (\forall x\in A.\ \langle h(x),f(x)\rangle \in r) \wedge (\forall x\in B.\ \langle h(x),g(x)\rangle \in r) \)assumes \( A \in \text{FinPow}(X) \) and \( B \in \text{FinPow}(X) \)
shows \( A \cup B \in \text{FinPow}(X) \)assumes \( M_1\subseteq \mathcal{M} \), \( M_1\subseteq M \), \( M_1\neq \emptyset \), \( f_1:M_1\rightarrow L_+ \), \( f:M\rightarrow L_+ \) and \( \forall d\in M_1.\ f(d)\leq f_1(d) \)
shows \( (\bigcap d\in M.\ d^{-1}(\{c\in L^+.\ c\leq f(d)\})) \subseteq (\bigcap d\in M_1.\ d^{-1}(\{c\in L^+.\ c\leq f_1(d)\})) \)assumes \( x\in X \) and \( \phi (x) \)
shows \( \exists x\in X.\ \phi (x) \)assumes \( B\in \mathfrak{B} \)
shows \( id(X)\subseteq B \)assumes \( B\in \mathfrak{B} \)
shows \( B = converse(B) \)assumes \( B\in \mathfrak{B} \)
shows \( B\subseteq X\times X \)assumes \( X\neq \emptyset \)
shows \( \text{FinPow}(X)\setminus \{\emptyset \} \neq \emptyset \)assumes \( c\in Y \)
shows \( \text{ConstantFunction}(X,c) : X\rightarrow Y \)assumes \( M\in \text{FinPow}(\mathcal{M} ) \), \( M\neq \emptyset \), \( f:M\rightarrow L_+ \)
shows \( (\bigcap d\in M.\ d^{-1}(\{c\in L^+.\ c\leq f(d)\})) \in \mathfrak{B} \)assumes \( Finite(X) \), \( \forall x\in X.\ \exists y\in Y.\ P(x,y) \)
shows \( \exists f\in X\rightarrow Y.\ \forall x\in X.\ P(x,f(x)) \)assumes \( b_2\in L_+ \) and \( b_2 + b_2 \leq b_1 \)
defines \( B_1 \equiv d^{-1}(\{c\in L^+.\ c\leq b_1\}) \) and \( B_2 \equiv d^{-1}(\{c\in L^+.\ c\leq b_2\}) \)
shows \( B_2\circ B_2 \subseteq B_1 \)assumes \( I\neq \emptyset \), \( \forall i\in I.\ A(i)\circ A(i) \subseteq B(i) \)
shows \( (\bigcap i\in I.\ A(i))\circ (\bigcap i\in I.\ A(i)) \subseteq (\bigcap i\in I.\ B(i)) \)assumes \( B_1\in \mathfrak{B} \), \( B_2\in \mathfrak{B} \)
shows \( \exists B\in \mathfrak{B} .\ B\subseteq B_1\cap B_2 \)assumes \( B\in \mathfrak{B} \)
shows \( id(X)\subseteq B \), \( B = converse(B) \), \( \exists B_2\in \mathfrak{B} .\ B_2 \subseteq converse(B) \)assumes \( B_1\in \mathfrak{B} \)
shows \( \exists B_2\in \mathfrak{B} .\ B_2\circ B_2 \subseteq B_1 \)assumes \( X\neq \emptyset \) and \( \mathfrak{B} \text{ is a uniform base on } X \)
shows \( \text{Supersets}(X\times X,\mathfrak{B} ) \text{ is a uniformity on } X \)assumes \( \Phi \text{ is a uniformity on } X \)
shows \( \text{UniformTopology}(\Phi ,X) \text{ is a topology } \) and \( \bigcup \text{UniformTopology}(\Phi ,X) = X \)assumes \( f: X\rightarrow X \) and \( x\in X \)
shows \( \text{InductiveSequence}(x,f) : nat \rightarrow X \)assumes \( f: X\rightarrow X \) and \( x\in X \)
shows \( \text{InductiveSequence}(x,f)(0) = x \)assumes \( f: X\rightarrow X \) and \( x\in X \) and \( n \in nat \)
shows \( \text{InductiveSequence}(x,f)(succ(n)) = f( \text{InductiveSequence}(x,f)(n)) \)assumes \( n\in nat \)
shows \( n + 1 = succ(n) \), \( n + 1 \in nat \), \( \{0\} + n = succ(n) \), \( n + \{0\} = succ(n) \), \( succ(n) \in nat \), \( 0 \in n + 1 \), \( n \subseteq n + 1 \)assumes \( U\in \Phi \), \( h \text{ is a halving function for } \Phi \)
defines \( H \equiv \text{InductiveSequence}(U,h) \)
shows \( H:nat\rightarrow \Phi \) and \( H(0) = U \)assumes \( \Phi \text{ is a uniformity on } X \), \( W\in \Phi \)
shows \( W \subseteq X\times X \) and \( domain(W) = X \)assumes \( r \subseteq X\times X \), \( id(X) \subseteq r \)
shows \( r \subseteq r\circ r \)assumes \( U\in \Phi \), \( h \text{ is a halving function for } \Phi \), \( n\in nat \)
defines \( H \equiv \text{InductiveSequence}(U,h) \)
shows \( H(n + 1) = converse(H(n + 1)) \) and \( H(n + 1)\circ H(n + 1) \subseteq H(n) \)assumes \( \text{IsPreorder}(X,r) \), \( \text{IsDecreasingSeq}(X,r,s) \)
shows \( r \text{ is total on } s(nat) \)assumes \( \Phi \text{ is a uniformity on } X \), \( U\in \Phi \), \( h \text{ is a halving function for } \Phi \)
defines \( H \equiv \text{InductiveSequence}(U,h) \)
shows \( \text{IsDecreasingSeq}(\Phi , \text{InclusionOn}(\Phi ),H) \), \( \text{InclusionOn}(\Phi ) \text{ is total on } (H(nat)) \), \( \text{InclusionOn}(\Phi ) \text{ is total on } (H(nat\setminus \{0\})) \)assumes \( \Phi \text{ is a uniformity on } X \) and \( A\in \Phi \)
shows \( A \subseteq X\times X \), \( id(X) \subseteq A \), \( \exists V\in \Phi .\ V\circ V \subseteq A \), \( converse(A) \in \Phi \)assumes \( f:X\rightarrow Y \)
shows \( f(B) \subseteq \text{range}(f) \) and \( f(B) \subseteq Y \)assumes \( f:X\rightarrow Y \) and \( A\subseteq X \)
shows \( f(A) = \{f(x).\ x \in A\} \)assumes \( n\in nat \), \( n\neq 0 \)
shows \( \exists m\in nat.\ n = m + 1 \)assumes \( U\in \Phi \), \( h \text{ is a halving function for } \Phi \), \( n\in nat \)
defines \( H \equiv \text{InductiveSequence}(U,h) \)
shows \( H(n + 1) = converse(H(n + 1)) \) and \( H(n + 1)\circ H(n + 1) \subseteq H(n) \)assumes \( \Phi \text{ is a uniformity on } X \)
shows \( \Phi \text{ is a filter on } (X\times X) \)assumes \( \Phi \text{ is a uniformity on } X \), \( U\in \Phi \), \( h \text{ is a halving function for } \Phi \)
defines \( H \equiv \text{InductiveSequence}(U,h) \)
assumes \( B_1\in H(nat\setminus \{0\}) \), \( B_2\in H(nat\setminus \{0\}) \)
shows \( \exists B\in H(nat\setminus \{0\}).\ B\subseteq B_1\cap B_2 \)assumes \( \Phi \text{ is a uniformity on } X \), \( U\in \Phi \), \( h \text{ is a halving function for } \Phi \)
defines \( H \equiv \text{InductiveSequence}(U,h) \)
assumes \( B\in H(nat\setminus \{0\}) \)
shows \( id(X)\subseteq B \), \( B = converse(B) \), \( \exists B_1\in H(nat\setminus \{0\}).\ B_1 \subseteq converse(B) \), \( \exists B_2\in H(nat\setminus \{0\}).\ B_2\circ B_2 \subseteq B \)assumes \( \Phi \text{ is a uniformity on } X \), \( U\in \Phi \), \( h \text{ is a halving function for } \Phi \)
defines \( H \equiv \text{InductiveSequence}(U,h) \)
shows \( H(nat\setminus \{0\}) \subseteq Pow(X\times X) \) and \( H(nat\setminus \{0\}) \neq \emptyset \)assumes \( \Phi \text{ is a uniformity on } X \), \( U\in \Phi \), \( h \text{ is a halving function for } \Phi \)
defines \( H \equiv \text{InductiveSequence}(U,h) \)
shows \( (H(nat\setminus \{0\})) \text{ is a uniform base on } X \)assumes \( \Phi \text{ is a uniformity on } X \) and \( A\in \Phi \)
shows \( A \subseteq X\times X \), \( id(X) \subseteq A \), \( \exists V\in \Phi .\ V\circ V \subseteq A \), \( converse(A) \in \Phi \)assumes \( \Phi \text{ is a uniformity on } X \), \( U\in \Phi \), \( h \text{ is a halving function for } \Phi \)
defines \( H \equiv \text{InductiveSequence}(U,h) \)
shows \( \text{IsDecreasingSeq}(\Phi , \text{InclusionOn}(\Phi ),H) \), \( \text{InclusionOn}(\Phi ) \text{ is total on } (H(nat)) \), \( \text{InclusionOn}(\Phi ) \text{ is total on } (H(nat\setminus \{0\})) \)assumes \( U\in \Phi \), \( h \text{ is a halving function for } \Phi \)
defines \( H \equiv \text{InductiveSequence}(U,h) \)
shows \( H:nat\rightarrow \Phi \) and \( H(0) = U \)assumes \( X\neq \emptyset \), \( \Phi \text{ is a uniformity on } X \), \( U\in \Phi \), \( h \text{ is a halving function for } \Phi \)
shows \( \text{CountBaseUnif}(X,h,U) \text{ is a uniformity on } X \) and \( U\in \text{CountBaseUnif}(X,h,U) \), \( \text{CountBaseUnif}(X,h,U) \subseteq \Phi \)assumes \( X\neq \emptyset \), \( \Phi \text{ is a uniformity on } X \), \( U\in \Phi \), \( h \text{ is a halving function for } \Phi \)
shows \( \text{CountBaseUnif}(X,h,U) \text{ is a uniformity on } X \) and \( U\in \text{CountBaseUnif}(X,h,U) \), \( \text{CountBaseUnif}(X,h,U) \subseteq \Phi \)assumes \( \Phi \text{ is a uniformity on } X \)
shows \( \Phi \neq \emptyset \)assumes \( X\neq \emptyset \), \( \Phi \text{ is a uniformity on } X \), \( U\in \Phi \), \( h \text{ is a halving function for } \Phi \)
shows \( \text{CountBaseUnif}(X,h,U) \text{ is a uniformity on } X \) and \( U\in \text{CountBaseUnif}(X,h,U) \), \( \text{CountBaseUnif}(X,h,U) \subseteq \Phi \)assumes \( X\neq \emptyset \), \( \mathcal{U} \subseteq \text{Uniformities}(X) \), \( \mathcal{U} \neq \emptyset \), \( (\bigcup \mathcal{U} ) \text{ is a uniformity on } X \)
shows \( \bigcup \mathcal{U} = \text{Supremum}( \text{OrderOnUniformities}(X),\mathcal{U} ) \)