In this theory we consider the collection of all uniformities on a arbitrary set \(X\). Since unformities are sets of subsets of \(X\times X\) such set of uniformities is naturally ordered by the inclusion relation. Specifically, for two uniformities \(\mathcal{U}_1\) and \(\mathcal{U}_2\) on a set \(X\) if \(\mathcal{U}_1 \subseteq \mathcal{U}_2\) we say that \(\mathcal{U}_2\) is finer than \(\mathcal{U}_1\) or that \(\mathcal{U}_1\) is coarser than \(\mathcal{U}_2\). In this theory we show that with this order the collection of uniformities forms a complete lattice.
In this section we introduce the definitions of the set of uniformities on \(X\) and show that the inclusion relation is on this set makes it a partially ordered set (a poset) with a maximum and minimum.
We define \( \text{Uniformities}(X) \) as the set of all uniformities on \(X\).
definition
\( \text{Uniformities}(X) \equiv \{\Phi \in Pow(Pow(X\times X)).\ \Phi \text{ is a uniformity on } X\} \)
If \(\Phi\) is a uniformity on \(X\), then \(\Phi\) is a collection of subsets of \(X\times X\), hence it's a member of \( \text{Uniformities}(X) \).
lemma unif_in_unifs:
assumes \( \Phi \text{ is a uniformity on } X \)
shows \( \Phi \in \text{Uniformities}(X) \) using assms unfolding Uniformities_def, IsUniformity_def, IsFilter_defFor nonempty sets the set of uniformities is not empty as well.
lemma unifomities_exist:
assumes \( X\neq \emptyset \)
shows \( \text{Uniformities}(X)\neq \emptyset \) unfolding Uniformities_def using assms, min_uniformityUniformities on a set \(X\) are naturally ordered by inclusion, we call the resulting order relation OrderOnUniformities.
definition
\( \text{OrderOnUniformities}(X) \equiv \text{InclusionOn}( \text{Uniformities}(X)) \)
For the order on uniformities two uniformities are in relation iff one is contained in the other.
lemma order_unif_iff:
assumes \( \Phi \in \text{Uniformities}(X) \), \( \Psi \in \text{Uniformities}(X) \)
shows \( \langle \Phi ,\Psi \rangle \in \text{OrderOnUniformities}(X) \longleftrightarrow \Phi \subseteq \Psi \) using assms unfolding OrderOnUniformities_def, InclusionOn_defThe order defined by inclusion on uniformities is a partial order.
lemma ord_unif_partial_ord:
shows \( \text{IsPartOrder}( \text{Uniformities}(X), \text{OrderOnUniformities}(X)) \) unfolding OrderOnUniformities_def using incl_is_partorderIn particular, the order defined by inclusion on uniformities is antisymmetric. Having this as a separate fact is handy as we reference some lemmas proven for antisymmetric (not necessarily partial order) relations.
lemma ord_unif_antisymm:
shows \( \text{antisym}( \text{OrderOnUniformities}(X)) \) using ord_unif_partial_ord unfolding IsPartOrder_defIf \(X\) is not empty then the singleton \(\{ X\times X\}\) is the minimal element of the set of uniformities on \(X\) ordered by inclusion and the collection of subsets of \(X\times X\) that contain the diagonal is the maximal element.
theorem uniformities_min_max:
assumes \( X\neq \emptyset \)
shows \( \text{HasAminimum}( \text{OrderOnUniformities}(X), \text{Uniformities}(X)) \), \( \text{Minimum}( \text{OrderOnUniformities}(X), \text{Uniformities}(X)) = \{X\times X\} \), \( \text{HasAmaximum}( \text{OrderOnUniformities}(X), \text{Uniformities}(X)) \), \( \text{Maximum}( \text{OrderOnUniformities}(X), \text{Uniformities}(X)) = \{U\in Pow(X\times X).\ id(X)\subseteq U\} \)proofIn this section we show that inclusion order on the collection of unformities on a fixed set is (Dedekind) complete i.e. every nonempty set of uniformities has a least upper bound.
Given a set of uniformities \(\mathcal{U}\) on \(X\) we define a collection of subsets of \(X\) called LUB_UnifBase (the least upper bound base in comments) as the set of all products of nonempty finite subsets of \(\bigcup\mathcal{U}\). The "least upper bound base" term is not justified at this point, but we will show later that this set is actually a uniform base (i.e. a fundamental system of entourages) on \(X\) and hence the supersets of it form a uniformity on \(X\), which is the supremum (i.e. the least upper bound) of \(\mathcal{U}\).
definition
\( \text{LUB_UnifBase}(\mathcal{U} ) = \{\bigcap M.\ M \in \text{FinPow}(\bigcup \mathcal{U} )\setminus \{\emptyset \}\} \)
For any two sets in the least upper bound base there is a third one contained in both.
lemma lub_unif_base_1st_cond:
assumes \( \mathcal{U} \subseteq \text{Uniformities}(X) \), \( U_1 \in \text{LUB_UnifBase}(\mathcal{U} ) \), \( U_2 \in \text{LUB_UnifBase}(\mathcal{U} ) \)
shows \( \exists U_3\in \text{LUB_UnifBase}(\mathcal{U} ).\ U_3\subseteq U_1\cap U_2 \)proofEach set in the least upper bound base contains the diagonal of \(X\times X\).
lemma lub_unif_base_2nd_cond:
assumes \( \mathcal{U} \subseteq \text{Uniformities}(X) \), \( U \in \text{LUB_UnifBase}(\mathcal{U} ) \)
shows \( id(X)\subseteq U \) using assms unfolding LUB_UnifBase_def, FinPow_def, Uniformities_def, IsUniformity_defThe converse of each set from the least upper bound base contains a set from it.
lemma lub_unif_base_3rd_cond:
assumes \( \mathcal{U} \subseteq \text{Uniformities}(X) \), \( U_1 \in \text{LUB_UnifBase}(\mathcal{U} ) \)
shows \( \exists U_2 \in \text{LUB_UnifBase}(\mathcal{U} ).\ U_2 \subseteq converse(U_1) \)proofFor each set (relation) \(U_1\) from the least upper bound base there is another one \(U_2\) such that \(U_2\) composed with itself is contained in \(U_1\).
lemma lub_unif_base_4th_cond:
assumes \( \mathcal{U} \subseteq \text{Uniformities}(X) \), \( U_1 \in \text{LUB_UnifBase}(\mathcal{U} ) \)
shows \( \exists U_2 \in \text{LUB_UnifBase}(\mathcal{U} ).\ U_2\circ U_2 \subseteq U_1 \)proofThe least upper bound base is a collection of relations on \(X\).
lemma lub_unif_base_5th_cond:
assumes \( \mathcal{U} \subseteq \text{Uniformities}(X) \)
shows \( \text{LUB_UnifBase}(\mathcal{U} ) \subseteq Pow(X\times X) \) using assms unfolding Uniformities_def, FinPow_def, LUB_UnifBase_defIf a collection of uniformities is nonempty, then the least upper bound base is non-empty as well.
lemma lub_unif_base_6th_cond:
assumes \( \mathcal{U} \subseteq \text{Uniformities}(X) \), \( \mathcal{U} \neq \emptyset \)
shows \( \text{LUB_UnifBase}(\mathcal{U} ) \neq \emptyset \)proofIf a collection of uniformities \(\mathcal{U}\) is nonempty, \(\mathcal{B}\) denotes the least upper bound base for \(\mathcal{U}\), then \(\mathcal{B}\) is a uniform base on \(X\), hence its supersets form a uniformity on \(X\) and the uniform topology generated by that uniformity is indeed a topology on \(X\).
theorem lub_unif_base_base:
assumes \( X\neq \emptyset \), \( \mathcal{U} \subseteq \text{Uniformities}(X) \), \( \mathcal{U} \neq \emptyset \)
defines \( \mathfrak{B} \equiv \text{LUB_UnifBase}(\mathcal{U} ) \)
shows \( \mathfrak{B} \text{ is a uniform base on } X \), \( \text{Supersets}(X\times X,\mathfrak{B} ) \text{ is a uniformity on } X \), \( \text{UniformTopology}( \text{Supersets}(X\times X,\mathfrak{B} ),X) \text{ is a topology } \), \( \bigcup \text{UniformTopology}( \text{Supersets}(X\times X,\mathfrak{B} ),X) = X \) using assms, lub_unif_base_1st_cond, lub_unif_base_2nd_cond, lub_unif_base_3rd_cond, lub_unif_base_4th_cond, lub_unif_base_5th_cond, lub_unif_base_6th_cond, uniformity_base_is_base, uniform_top_is_top unfolding IsUniformityBaseOn_defAt this point we know that supersets with respect to \(X\times X\) of the least upper bound base for a collection of uniformities \(\mathcal{U}\) form a uniformity. To shorten the notation we will call this uniformity \( \text{LUB_Unif}(X,\mathcal{U} ) \).
definition
\( \text{LUB_Unif}(X,\mathcal{U} ) \equiv \text{Supersets}(X\times X,\text{LUB_UnifBase}(\mathcal{U} )) \)
With this definition we can rewrite some asssertions of theorem lub_unif_base_base in bit shorter form:
corollary lub_unif_base_base1:
assumes \( X\neq \emptyset \), \( \mathcal{U} \subseteq \text{Uniformities}(X) \), \( \mathcal{U} \neq \emptyset \)
shows \( \text{LUB_Unif}(X,\mathcal{U} ) \text{ is a uniformity on } X \), \( \text{UniformTopology}(\text{LUB_Unif}(X,\mathcal{U} ),X) \text{ is a topology } \), \( \bigcup \text{UniformTopology}(\text{LUB_Unif}(X,\mathcal{U} ),X) = X \) using assms, lub_unif_base_base unfolding LUB_Unif_defFor any collection of uniformities \(\mathcal{U}\) on a nonempty set \(X\) the \( \text{LUB_Unif}(X,\mathcal{U} ) \) collection defined above is indeed an upper bound of \(\mathcal{U}\) in the order defined by the inclusion relation.
lemma lub_unif_upper_bound:
assumes \( X\neq \emptyset \), \( \mathcal{U} \subseteq \text{Uniformities}(X) \), \( \Phi \in \mathcal{U} \)
shows \( \langle \Phi ,\text{LUB_Unif}(X,\mathcal{U} )\rangle \in \text{OrderOnUniformities}(X) \)proofAny upper bound (in the order defined by inclusion relation) of a nonempty collection of uniformities \(\mathcal{U}\) on a nonempty set \(X\) is greater or equal (in that order) than \( \text{LUB_Unif}(X,\mathcal{U} ) \). Together with lub_unif_upper_bound it means that \( \text{LUB_Unif}(X,\mathcal{U} ) \) is indeed the least upper bound of \(\mathcal{U}\).
lemma lub_unif_lub:
assumes \( X\neq \emptyset \), \( \mathcal{U} \subseteq \text{Uniformities}(X) \), \( \mathcal{U} \neq \emptyset \) and \( \forall \Phi \in \mathcal{U} .\ \langle \Phi ,\Psi \rangle \in \text{OrderOnUniformities}(X) \)
shows \( \langle \text{LUB_Unif}(X,\mathcal{U} ),\Psi \rangle \in \text{OrderOnUniformities}(X) \)proofA nonempty collection \(\mathcal{U}\) of uniformities on \(X\) has a supremum (i.e. the least upper bound) which is a uniformity.
theorem lub_unif_sup:
assumes \( X\neq \emptyset \), \( \mathcal{U} \subseteq \text{Uniformities}(X) \), \( \mathcal{U} \neq \emptyset \)
shows \( \text{HasAsupremum}( \text{OrderOnUniformities}(X),\mathcal{U} ) \), \( \text{LUB_Unif}(X,\mathcal{U} ) = \text{Supremum}( \text{OrderOnUniformities}(X),\mathcal{U} ) \), \( \text{Supremum}( \text{OrderOnUniformities}(X),\mathcal{U} ) \text{ is a uniformity on } X \)proofThe order on uniformities derived from inclusion is complete.
theorem uniformities_complete:
assumes \( X\neq \emptyset \)
shows \( \text{OrderOnUniformities}(X) \text{ is complete } \)proofIn this this section we show that every set of uniformities on fixed set \(X\) has an greatest lower bound, i.e. an infimum. The approach taken in the previous section to show the existence of the lowest upper bound of a collection of uniformities does not work for the greatest lower bound. The collection defined as the set of all products of nonempty finite subsets of \(\bigcap\mathcal{U}\) in general is not a fundamental system of entourages. Even though the first three conditions hold for such collection, the fourth one does not. The approach that works is to show the the supremum of the collection of lower bounds is actually a lower bound, hence the maximum of the set of lower bounds.
To shorten the proofs we introduce the concept of the supremum of the the collection of lower bounds of some collection of uniformities \(\mathcal{U}\). We know from the previous section that such supremum exists. Later in this section we show that this supremum is itself a lower bound of \(\mathcal{U}\), so it's the greatest lower bound i.e. infimum of \(\mathcal{U}\).
definition
\( SLB\_Unif(X,\mathcal{U} ) \equiv \text{Supremum}( \text{OrderOnUniformities}(X),\{\Psi \in \text{Uniformities}(X).\ \Psi \subseteq \bigcap \mathcal{U} \}) \)
The set of lower bounds of a nonempty set of uniformities is nonempty.
lemma lb_nempty_nempty:
assumes \( X\neq \emptyset \), \( \mathcal{U} \subseteq \text{Uniformities}(X) \), \( \mathcal{U} \neq \emptyset \)
shows \( \{\Psi \in \text{Uniformities}(X).\ \Psi \subseteq \bigcap \mathcal{U} \} \neq \emptyset \)proofThe supremum of the set of lower bounds of a collection of uniformities is a lower bound of that collection.
lemma unif_slb_is_lb:
assumes \( X\neq \emptyset \), \( \mathcal{U} \subseteq \text{Uniformities}(X) \), \( \mathcal{U} \neq \emptyset \)
shows \( SLB\_Unif(X,\mathcal{U} ) \subseteq \bigcap \mathcal{U} \)proofLet \(\mathfrak{U}\) denote the collection of all uniformities on a nonempty set \(X\), ordered by inclusion. Then every collection of uniformities \(\mathcal{U}\subseteq \mathfrak{U}\) has an infimum (the greatest lower bound) which is equal to the supremum of the collection of lower bounds.
theorem unif_inf:
assumes \( X\neq \emptyset \), \( \mathcal{U} \subseteq \text{Uniformities}(X) \), \( \mathcal{U} \neq \emptyset \)
shows \( \text{HasAnInfimum}( \text{OrderOnUniformities}(X),\mathcal{U} ) \) and \( \text{Infimum}( \text{OrderOnUniformities}(X),\mathcal{U} ) = SLB\_Unif(X,\mathcal{U} ) \)proofassumes \( X\neq \emptyset \)
shows \( \{X\times X\} \text{ is a uniformity on } X \)assumes \( X\neq \emptyset \)
shows \( \{U\in Pow(X\times X).\ id(X)\subseteq U\} \text{ is a uniformity on } X \)assumes \( \Phi \text{ is a uniformity on } X \)
shows \( (X\times X) \in \Phi \)assumes \( \text{antisym}(r) \) and \( m \in A \) and \( \forall a\in A.\ \langle m,a\rangle \in r \)
shows \( \text{Minimum}(r,A) = m \)assumes \( \text{antisym}(r) \) and \( M \in A \) and \( \forall a\in A.\ \langle a,M\rangle \in r \)
shows \( \text{Maximum}(r,A) = M \)assumes \( A \in \text{FinPow}(X) \) and \( B \in \text{FinPow}(X) \)
shows \( A \cup B \in \text{FinPow}(X) \)assumes \( \Phi \text{ is a uniformity on } X \) and \( A\in \Phi \)
shows \( A \subseteq X\times X \), \( id(X) \subseteq A \), \( \exists V\in \Phi .\ V\circ V \subseteq A \), \( converse(A) \in \Phi \)assumes \( N \in \text{FinPow}(B)\setminus \{\emptyset \} \) and \( \forall V\in N.\ K(V)\in C \)
shows \( \{K(V).\ V\in N\} \in \text{FinPow}(C)\setminus \{\emptyset \} \)assumes \( M \subseteq Pow(X\times X) \)
shows \( \bigcap \{converse(A).\ A\in M\} = converse(\bigcap M) \)assumes \( \Phi \text{ is a uniformity on } X \) and \( A\in \Phi \)
shows \( A \subseteq X\times X \), \( id(X) \subseteq A \), \( \exists V\in \Phi .\ V\circ V \subseteq A \), \( converse(A) \in \Phi \)assumes \( Finite(X) \), \( \forall x\in X.\ \exists y\in Y.\ P(x,y) \)
shows \( \exists f\in X\rightarrow Y.\ \forall x\in X.\ P(x,f(x)) \)assumes \( I\neq \emptyset \), \( \forall i\in I.\ A(i)\circ A(i) \subseteq B(i) \)
shows \( (\bigcap i\in I.\ A(i))\circ (\bigcap i\in I.\ A(i)) \subseteq (\bigcap i\in I.\ B(i)) \)assumes \( \Phi \text{ is a uniformity on } X \)
shows \( \Phi \neq \emptyset \)assumes \( X\neq \emptyset \)
shows \( \text{FinPow}(X)\setminus \{\emptyset \} \neq \emptyset \)assumes \( \mathcal{U} \subseteq \text{Uniformities}(X) \), \( U_1 \in \text{LUB_UnifBase}(\mathcal{U} ) \), \( U_2 \in \text{LUB_UnifBase}(\mathcal{U} ) \)
shows \( \exists U_3\in \text{LUB_UnifBase}(\mathcal{U} ).\ U_3\subseteq U_1\cap U_2 \)assumes \( \mathcal{U} \subseteq \text{Uniformities}(X) \), \( U \in \text{LUB_UnifBase}(\mathcal{U} ) \)
shows \( id(X)\subseteq U \)assumes \( \mathcal{U} \subseteq \text{Uniformities}(X) \), \( U_1 \in \text{LUB_UnifBase}(\mathcal{U} ) \)
shows \( \exists U_2 \in \text{LUB_UnifBase}(\mathcal{U} ).\ U_2 \subseteq converse(U_1) \)assumes \( \mathcal{U} \subseteq \text{Uniformities}(X) \), \( U_1 \in \text{LUB_UnifBase}(\mathcal{U} ) \)
shows \( \exists U_2 \in \text{LUB_UnifBase}(\mathcal{U} ).\ U_2\circ U_2 \subseteq U_1 \)assumes \( \mathcal{U} \subseteq \text{Uniformities}(X) \)
shows \( \text{LUB_UnifBase}(\mathcal{U} ) \subseteq Pow(X\times X) \)assumes \( \mathcal{U} \subseteq \text{Uniformities}(X) \), \( \mathcal{U} \neq \emptyset \)
shows \( \text{LUB_UnifBase}(\mathcal{U} ) \neq \emptyset \)assumes \( X\neq \emptyset \) and \( \mathfrak{B} \text{ is a uniform base on } X \)
shows \( \text{Supersets}(X\times X,\mathfrak{B} ) \text{ is a uniformity on } X \)assumes \( \Phi \text{ is a uniformity on } X \)
shows \( \text{UniformTopology}(\Phi ,X) \text{ is a topology } \) and \( \bigcup \text{UniformTopology}(\Phi ,X) = X \)assumes \( X\neq \emptyset \), \( \mathcal{U} \subseteq \text{Uniformities}(X) \), \( \mathcal{U} \neq \emptyset \)
defines \( \mathfrak{B} \equiv \text{LUB_UnifBase}(\mathcal{U} ) \)
shows \( \mathfrak{B} \text{ is a uniform base on } X \), \( \text{Supersets}(X\times X,\mathfrak{B} ) \text{ is a uniformity on } X \), \( \text{UniformTopology}( \text{Supersets}(X\times X,\mathfrak{B} ),X) \text{ is a topology } \), \( \bigcup \text{UniformTopology}( \text{Supersets}(X\times X,\mathfrak{B} ),X) = X \)assumes \( X\neq \emptyset \), \( \mathcal{U} \subseteq \text{Uniformities}(X) \), \( \mathcal{U} \neq \emptyset \)
defines \( \mathfrak{B} \equiv \text{LUB_UnifBase}(\mathcal{U} ) \)
shows \( \mathfrak{B} \text{ is a uniform base on } X \), \( \text{Supersets}(X\times X,\mathfrak{B} ) \text{ is a uniformity on } X \), \( \text{UniformTopology}( \text{Supersets}(X\times X,\mathfrak{B} ),X) \text{ is a topology } \), \( \bigcup \text{UniformTopology}( \text{Supersets}(X\times X,\mathfrak{B} ),X) = X \)assumes \( \Phi \text{ is a uniformity on } X \)
shows \( \Phi \in \text{Uniformities}(X) \)assumes \( x \in X \)
shows \( \{x\} \in \text{FinPow}(X) \)assumes \( \Phi \text{ is a uniformity on } X \) and \( A\in \Phi \)
shows \( A \subseteq X\times X \), \( id(X) \subseteq A \), \( \exists V\in \Phi .\ V\circ V \subseteq A \), \( converse(A) \in \Phi \)assumes \( A\subseteq X \), \( A\in \mathcal{A} \)
shows \( A \in \text{Supersets}(X,\mathcal{A} ) \)assumes \( \mathfrak{F} \text{ is a filter on } X \), \( M\in \text{FinPow}(\mathfrak{F} )\setminus \{\emptyset \} \)
shows \( \bigcap M \in \mathfrak{F} \)assumes \( \mathfrak{F} \text{ is a filter on } X \), \( \mathcal{A} \subseteq \mathfrak{F} \)
shows \( \text{Supersets}(X,\mathcal{A} ) \subseteq \mathfrak{F} \)assumes \( X\neq \emptyset \), \( \mathcal{U} \subseteq \text{Uniformities}(X) \), \( \Phi \in \mathcal{U} \)
shows \( \langle \Phi ,\text{LUB_Unif}(X,\mathcal{U} )\rangle \in \text{OrderOnUniformities}(X) \)assumes \( X\neq \emptyset \), \( \mathcal{U} \subseteq \text{Uniformities}(X) \), \( \mathcal{U} \neq \emptyset \) and \( \forall \Phi \in \mathcal{U} .\ \langle \Phi ,\Psi \rangle \in \text{OrderOnUniformities}(X) \)
shows \( \langle \text{LUB_Unif}(X,\mathcal{U} ),\Psi \rangle \in \text{OrderOnUniformities}(X) \)assumes \( \text{antisym}(r) \) and \( A\neq 0 \) and \( \forall x\in A.\ \langle x,z\rangle \in r \) and \( \forall y.\ (\forall x\in A.\ \langle x,y\rangle \in r) \longrightarrow \langle z,y\rangle \in r \)
shows \( \text{HasAminimum}(r,\bigcap a\in A.\ r\{a\}) \), \( z = \text{Supremum}(r,A) \)assumes \( \text{antisym}(r) \) and \( A\neq 0 \) and \( \forall x\in A.\ \langle x,z\rangle \in r \) and \( \forall y.\ (\forall x\in A.\ \langle x,y\rangle \in r) \longrightarrow \langle z,y\rangle \in r \)
shows \( \text{HasAminimum}(r,\bigcap a\in A.\ r\{a\}) \), \( z = \text{Supremum}(r,A) \)assumes \( X\neq \emptyset \), \( \mathcal{U} \subseteq \text{Uniformities}(X) \), \( \mathcal{U} \neq \emptyset \)
shows \( \text{LUB_Unif}(X,\mathcal{U} ) \text{ is a uniformity on } X \), \( \text{UniformTopology}(\text{LUB_Unif}(X,\mathcal{U} ),X) \text{ is a topology } \), \( \bigcup \text{UniformTopology}(\text{LUB_Unif}(X,\mathcal{U} ),X) = X \)assumes \( X\neq \emptyset \), \( \mathcal{U} \subseteq \text{Uniformities}(X) \), \( \mathcal{U} \neq \emptyset \)
shows \( \text{HasAsupremum}( \text{OrderOnUniformities}(X),\mathcal{U} ) \), \( \text{LUB_Unif}(X,\mathcal{U} ) = \text{Supremum}( \text{OrderOnUniformities}(X),\mathcal{U} ) \), \( \text{Supremum}( \text{OrderOnUniformities}(X),\mathcal{U} ) \text{ is a uniformity on } X \)assumes \( X\neq \emptyset \), \( \mathcal{U} \subseteq \text{Uniformities}(X) \), \( \mathcal{U} \neq \emptyset \)
shows \( \{\Psi \in \text{Uniformities}(X).\ \Psi \subseteq \bigcap \mathcal{U} \} \neq \emptyset \)assumes \( \Phi \text{ is a uniformity on } X \)
shows \( \Phi \text{ is a filter on } (X\times X) \)assumes \( X\neq \emptyset \), \( \mathcal{U} \subseteq \text{Uniformities}(X) \), \( \mathcal{U} \neq \emptyset \)
shows \( \text{HasAsupremum}( \text{OrderOnUniformities}(X),\mathcal{U} ) \), \( \text{LUB_Unif}(X,\mathcal{U} ) = \text{Supremum}( \text{OrderOnUniformities}(X),\mathcal{U} ) \), \( \text{Supremum}( \text{OrderOnUniformities}(X),\mathcal{U} ) \text{ is a uniformity on } X \)assumes \( X\neq \emptyset \), \( \mathcal{U} \subseteq \text{Uniformities}(X) \), \( \mathcal{U} \neq \emptyset \)
shows \( SLB\_Unif(X,\mathcal{U} ) \subseteq \bigcap \mathcal{U} \)assumes \( \text{antisym}(r) \), \( \text{HasAsupremum}(r,A) \), \( \text{Supremum}(r,A) \in A \)
shows \( \text{HasAmaximum}(r,A) \) and \( \text{Maximum}(r,A) = \text{Supremum}(r,A) \)assumes \( r\subseteq X\times X \), \( A\neq \emptyset \)
shows \( (\bigcap a\in A.\ r^{-1}\{a\}) = \{x\in X.\ \forall a\in A.\ \langle x,a\rangle \in r\} \)assumes \( \Phi \in \text{Uniformities}(X) \), \( \Psi \in \text{Uniformities}(X) \)
shows \( \langle \Phi ,\Psi \rangle \in \text{OrderOnUniformities}(X) \longleftrightarrow \Phi \subseteq \Psi \)